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Abstract

A genetic network is a formalism that is often used in biology to represent causali-

ties and reason about biological phenomena related to genetic regulation. We present

GenePath, a computer-based system that supports the inference of genetic networks

from a set of genetic experiments. Implemented in Prolog, GenePath uses abductive

inference to elucidate network constraints based on background knowledge and experi-

mental results. Additionally, it can propose genetic experiments that may further refine

the discovered network and establish relations between genes that could not be related

based on the original experimental data. We illustrate GenePath’s approach and utility

on analysis of data on aggregation and sporulation of the soil amoeba Dictyostelium

discoideum.
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1 Introduction

Genes are basic units of genetic material. They are coded in double-stranded DNAs

and reside within chromosomes of each living cell. Generally, each gene encodes a

specific protein. In the process of protein synthesis a gene is first transcribed to a

single-stranded RNA molecule (mRNA), which is then translated to a protein. Genes

can excite or inhibit each other at various levels. The molecular mechanisms of exci-

tation or inhibition can involve direct regulation of gene expression where the transla-

tion product (protein) of one gene directly regulated the transcription of another gene

through protein-DNA interactions. They can also involve protein-RNA interactions

that regulate mRNA translation, or protein-protein interactions that regulate protein

activity, stability or localization. In this manuscript we refer to excitatory or inhibitory

relationships between genes regardless of the molecular mechanism.

Biologists often use genetic networks to express and study relations between genes

and the biological processes they regulate. Genetic networks are models that, in their

often very simplified way, describe some biological phenomenon from the viewpoint of

interactions between genes. They provide a high-level view and disregard most details

on how exactly one gene regulates the activity of another. They include genes under

study and some biological processes (in most cases only one) that is regulated by these

genes. A genetic network is a graph whose nodes correspond to genes and biological

processes, and arcs correspond to influences of genes on other genes and on biological

processes. In this paper we consider the most commonly used and reported type of

genetic networks, qualitative genetic networks. In qualitative genetic networks, the

interaction between elements of the network is simplified to sole inhibition (negative

influence) or excitation of activity (positive influence), while the magnitude of the

influence or the particular regulation function are not shown.

Consider for example the genetic network shown in Figure 1. It includes four genes

(regA, pufA, pkaR and pkaC) and a single biological process (agg, aggregation of soil

amoeba D. discoideum). Arcs marked with � denote inhibition, and those with →
denote excitation. Hypothetically, keeping all other activities constant, activity of pkaR

should rise upon elevated activity of regA, or decrease under the reduction of activity of
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regA. Conversely, and according to the network, activity of pkaC should decrease under

increase of activity of pkaR (or pufA). Notice that the qualitative network does not

denote to what extent and exactly how the activity of one gene should change to notice

the change of activity of other genes. It depicts only the type of relation. Perhaps even

more importantly, genetic networks encode the genetic pathways, e.g., chains (paths)

of gene regulation. For instance, from Figure 1 it is clear that gene pkaC is regulated

by gene regA, but the regulation is not direct as it goes through another gene (pkaR).

On the other hand, the genes pufA and pkaR directly influence the activity of pkaC.

The notion of “directness” is based on the closed-world assumption: genetic networks

consider only a (small) subset of the cell’s genes and ignore all other genes. For instance,

the network from Figure 1 depicts only relations between regA, pufA, pkaR, pkaC and

aggregation. Therefore, the arrow between regA and pufA only states that none of the

other considered genes mediates between regA and pufA. There may be other genes in

the cell – ones that are not included in the study and the network – on the path from

regA to pufA.

[Figure 1 about here.]

A geneticist’s main tool to investigate biological phenomena and build corresponding

genetic networks is inducing mutations. There are two most often used types of mu-

tations. In gene inactivation, geneticists remove a gene from the DNA (this is also

called a “knock-out”) or use some other means to prevent it from being expressed.

An opposite mutation that is often harder to induce in the laboratory, is activation

of a gene (also referred to as overexpression), that results in a gene being significantly

more active than under normal conditions. Although an organism can have more than

one gene mutated, geneticists mostly use only single and double mutants since induc-

ing a greater number of mutations can be technically difficult. Geneticists then infer

genetic networks by comparing the resulting biological processes on different strains

of mutated organisms, or by comparing mutant organisms to organisms without any

artificially induced mutations (so-called wild-type organisms).

For instance, upon starvation, the soil amoeba Dictyostelium discoideum in aggregates
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and forms a multi-cellular organism. But a mutant with a knocked-out gene pkaC does

not aggregate; this provides the evidence that pkaC essential for the aggregation process

and that its effect to aggregation is positive (excitatory). Conversely, a mutant with a

knocked-out pufA aggregates excessively, also indicating the involvement of this gene in

the aggregation process, but this time with a negative (inhibitory) effect. Determining

the order of genes in the network and discovering the potential parallelism of effect of

genes requires at least a triplet of experiments where at least one should have more

than a single mutated gene. The logic and inference patterns behind this are explained

later in the paper.

At this point we should note that at present biological experiments with mutants are

time consuming. It usually takes several weeks from preparing a mutant organism

to obtaining experimental results in wet labs. For this reason, the largest of genetic

networks reported to-date include no more than several tens of genes, and collecting

experiments that provide the evidence often takes several man-years of effort. Biologists

therefore reason about a limited number of genes at a time, and usually construct

their networks from no more than a few tens of experiments. But even for these, the

analysis of the experimental data is not trivial. The combinatorial explosion of number

of possible relations and gene orderings calls for a tool that would assist in construction

of genetic networks and that would incorporate the basic principles from genetic data

analysis.

In this paper, we report on GenePath (http://genepath.org), a program that may

be regarded as an intelligent assistant in genetic data analysis. It constructs genetic

networks from gathered experimental results and the already known relations between

genes and processes (background knowledge). Besides that, it can propose new exper-

iments to refine the discovered networks or gather additional proofs for its relations.

Its primary source of data are genetic experiments, in which genes are either knocked

out or activated, and the behavior of the system – qualitative descriptions of biolog-

ical processes – under such mutations. To construct a genetic network, GenePath

uses a set of expert-defined inference patterns in the form “IF a certain combination

of experiments is found in the data, THEN a certain relationship between genes and

a biological processes is concluded”. When applied to the data, these inference pat-
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terns identify constraints for the corresponding genetic network. GenePath then uses

these constraints to construct a genetic network that explains the data. The biolog-

ical motivation of GenePath and details on patterns it uses for abduction were first

described in [23]; the current paper focuses on methodological issues, and extends origi-

nal GenePath framework with qualitative reasoning and methods to propose alternative

networks and additional experiments.

To propose genetic networks, GenePath performs abductive reasoning, as opposed to the

more common deductive reasoning. Deductive reasoning starts with some given logical

formula A and derives a new formula B such that B logically follows from A. That is,

if A is true, then B must be true. In a sense, deductive reasoning does not produce any

new information: all the information contained in the result B is already implied by the

information given in A. On the other hand, abductive reasoning produces results that

do not necessarily follow from the given information, but are in some respect relevant to

it. Thus, abduction can result in a new, useful information, but that information is not

necessarily true. The most common application of abductive reasoning is generation

of explanation for observations. We have some background knowledge BK and some

experimental observations E. The observations E do not logically follow from the

existing knowledge BK, so we say that BK does not (entirely) explain the observations

(although the two are not in contradiction). We are looking for a hypothesis H, so

that BK together with H imply E (formally, BK ∪ H |= E). That is, H (in the

context of BK) explains the given experiments. In GenePath, E represents the genetic

experiments, BK is prior biological knowledge, and H is the desired genetic network.

The logic behind GenePath’s algorithm is the same as used by geneticists world-wide

when they manually construct network models (see, for example, [2]). A major con-

tribution of our work is in the formalisation and partial automation of geneticists’

reasoning. Thus, a geneticist can follow the reasoning performed by GenePath and

clearly understand the justification, in terms of experimental data, for including par-

ticular parts of the constructed network. The approach was successfully tested on

several real-life applications. Two such applications – aggregation and sporulation

of the soil amoeba Dictyostelium discoideum – are reported in this paper. Another

original contribution of GenePath is originated from its particular implementation and
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interface: GenePath allows the user to examine the experimental evidence and the logic

that were used to determine each particular relationship between genes. This allows

a geneticist to trace back every finding (relation) to the set of original experiments

that provided the evidence for it. Furthermore, GenePath can identify which couples

of genes could not be related based on experimental data. It can then propose new

experiments that would make it possible to relate each of these gene couples, and pro-

pose, depending on the outcome of such experiments, revisions of the genetic network.

As such, GenePath is not intended to replace the researcher, but rather to support the

processes of cataloging and interpreting genetic experiments, the derivation of genetic

networks, and proposal of new experiments.

We start our description of GenePath with an example of genetic data on aggregation

of Dictyostelium discoideum that is used throughout the paper to illustrate the utility

of developed techniques. A general description of GenePath’s framework is given next,

followed by a description of particular mechanisms for abduction of relations, con-

struction of genetic networks and proposal of genetic experiments. Finally, we mention

another successful case of GenePath’s use (sporulation of Dictyostelium), provide some

discussion of experimental results, utility and computational efficiency of GenePath,

and conclude with some ideas for potential extensions of developed methodology.

It should be noted that the examples of Dictyostelium aggregation and sporulation in

this paper are not useful only as illustrations of GenePath’s mechanisms, but they are

of realistic complexity with respect to genetic research and both represent relevant and

currently investigated genetic problems. The complexity of these examples and the

resulting genetic networks are indicative of the complexity of genetic network theories

in current research in functional genomics based on mutation experiments. At the end

of the paper we also discuss the scalability of GenePath to much larger datasets with,

say, a thousand genes. However, for reasons mentioned earlier, there is relatively little

practical need, in mutation-based research, for scalability beyond a few tens of genes

which is easily accommodated within GenePath’s present capability.
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2 Data and Background Knowledge

Experiments that GenePath can consider are represented as tuples of mutations and

outcomes. A mutation is specified as a set of one or more genes with information on the

type of mutation. A gene can be either knocked-out or overexpressed. The outcome

of an experiment is a geneticist’s description of biological processes, also termed as a

phenotype (e.g., “cells grow”, “cells do not grow”, etc). It should be noted that the

abstract representation used in GenePath is precisely the representation used by the

geneticists when manually constructing genetic theories.

A data set that will be used to illustrate some of GenePath’s functionality is given in

Table 1. The data comes from the studies of Dictyostelium discoideum, an organism

that has a particularly interesting developmental cycle from single independent cells to

a multicellular slug-like form (Figure 2). The transition from ordinary single cells to

a multicellular structure is of great interest for biologists studying the evolution and

development of multicellular organisms [22, 17, 16]. This phenomenon is still a topic

of ongoing research.

[Table 1 about here.]

The example data set focuses on cell aggregation. Observed aggregation was either

normal (“+”), increased (“±”), excessive (“++”), or absent (“-”). The first row of

Table 1 corresponds to the wild type (experiment with organism with no mutation).

The remaining rows correspond to 14 mutation experiments. Mutations were performed

on six genes: yakA, pufA, pkaR, pkaC, acaA, and regA. In each experiment (except for

the wild type) selected genes were either knocked-out or overexpressed (denoted with

“-” or “+”, respectively). Note that the aggregation level is an ordinal variable, with

the order being -, +, ±, ++.

[Figure 2 about here.]

Background knowledge may be given to GenePath in the form of known relations

between genes. For our example, GenePath was informed that it is already known that
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acaA inhibits pkaR and that pkaR inhibits pkaC. Therefore, the following two relations

form our background knowledge:

acaA � pkaR

pkaR � pkaC

3 Overview of GenePath

GenePath implements a framework for reasoning about genetic experiments and hy-

pothesizing genetic networks. This framework, illustrated in Figure 3, consists of the

following entities:

• genetic data, i.e., experiments with mutations and corresponding outcomes,

• background knowledge in the form of known relations between genes and biological

processes,

• expert-defined reasoning patterns, used by GenePath to abduce gene relations

from genetic experiments,

• abductive inference engine that matches the encoded patterns with genetic data

to obtain constraints over the genetic network,

• network synthesis that constructs a network (hypothesis) that is consistent with

genetic data, abduced constraints and background knowledge, and

• engine for proposal of genetic experiments that, given existing genetic data and

abduced constrains, proposes sets of additional experiments that would refine the

derived network and provide evidence for relations that could not be established

from the existing data set.

[Figure 3 about here.]
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Overall, Genepath works as follows. It takes experimental data (such as those in

Table 1) and abduces relations between genes and outcomes (step (a) in Figure 3). In

this step, GenePath uses abductive inference patterns (described in Section 4) designed

to closely mimic the reasoning of expert geneticists. Discovered relations and relations

from background knowledge form a set of constraints that a derived network must

satisfy. Genepath finds and shows one such network (b). It can then propose sets of

new genetic experiments that would provide additional information needed to refine

the network (c). The user may review the proposed sets of experiments and decide

which ones to perform in the laboratory (d). New experimental results are then added

to the experimental data, and the cycle may be repeated from step (a).

4 Expert-Defined Abduction Patterns

GenePath’s inference patterns define how various relations between genes may be ab-

duced from the data. These inference patterns are implemented as clauses in Prolog

programming language and are used to determine the relation between two genes or

the relation between a gene and a biological process. Every relation found from data

is accompanied by the evidence in the form of the name of the inference pattern that

was used to find the relation and the experiments that support it. Where the pattern

includes gene’s influence, this can be either “excites” or “inhibits” and is determined

directly from the data. GenePath is currently capable of abducing the following types

of relations among genes and biological processes:

1. influences: GeneA influences GeneB or biological process BP. The influence can be

either excitation, written as GeneA → GeneB, or inhibition, written as GeneA �
GeneB.

2. not influences: GeneA does not influence a biological process BP.

3. parallel: both GeneA and GeneB influence a biological process BP, but are on

separate (parallel) paths in the genetic network, i.e., neither of the two genes

influences the other. This is written as GeneA || GeneB.
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4. epistatic: GeneA precedes GeneB in a genetic network (both genes are therefore

on the same path, but GeneB is closer to the node that represents a biological

process); we also say that GeneB is epistatic to GeneA, or also that GeneB is on

the same path both to the biological process BP but downstram from GeneA .

One or more inference patterns exist for inferring each type of relation. For instance,

there are (at the time of writing of this paper) two patterns for epistasis and one for

parallelism. GenePath’s patterns are in detail described in [23]; to give an example

and illustrate how they are used on the data, we will bellow two distinct patterns, one

for parallelism and one for epistasis.

It should be emphasized that the inference patterns have been designed with the aim

of closely mimicking geneticists’ reasoning when they manually construct genetic net-

works. They have strong empirical verification, but they have not been formally proven

sound and/or complete. Therefore we view these patterns as rules for abductive infer-

ence.

4.1 Inference Pattern parDiff for Parallel Relation

There is currently a sole pattern for inferring parallel relation, called parDiff. This

pattern determines the thruth of the following predicate:

parallel(GeneA, GeneB, parDiff, Exp1, Exp2, Exp3,BP)

The predicate states that genes GeneA nad GeneB are on parallel paths to biological

process BP. Experiments Exp1, Exp2 and Exp3 provide evidence for this relation be-

tween GeneA and GeneB. The inference rule for this predicate is: let us have three

experiments: single mutation of GeneA and phenotype PA (Exp1), single mutation of

GeneB and phenotype PB (Exp2), and double mutation of both GeneA and GeneB and

phenotype PAB (Exp3). Phenotypes PA, PAB, and PB are all descriptions of the same

biological process BP. If PA and PB are both different from the wild type, and PA �= PAB

and PB �= PAB then GeneA and GeneB are on parallel paths to biological process BP.
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In other words and less formally, pattern parDiff says that two genes are in parallel

pathways if mutations in either gene have an effect on the biological process and the

phenotype of the double mutant is different from either mutation alone.

For instance, using the pattern parDiff, genes yakA and pkaR are found to act in

parallel pathways because the outcomes of the single gene mutations in experiments 2

and 4 are different from each other and from the outcome of the double gene mutation

in experiment 12.

GenePath has thus found that yakA should be on a different path to aggregation than

pkaR, or, formally yakA || pkaR. Notice also that the evidence for the above is stated
in terms of corresponding trio of experiments (experiments 2, 4 and 12 from Table 1)

that matched the parDiff pattern.

4.2 Inference Pattern epMut for Epistatic Relation

One of the most important patterns for the construction of genetic networks in GenePath

is epMut, which is one of the two patterns for epistasis. Epistatic relations between

genes are represented by the predicate:

epistatic(GeneA, GeneB, Influence, epMut, Exp1, Exp2, Exp3, BP)

This says that GeneB is epistatic to GeneA, that is, GeneB follows GeneA on one path

to the biological process BP in a genetic network. The argument Influence gives the

type of influence of GeneA or GeneB (either excitatory or inhibitory). Experiments

Exp1, Exp2 and Exp3 provide evidence for this relation.

The corresponding inference rule for this pattern is: if two different mutations (ex-

periments Exp1 and Exp2 with mutations of GeneA and GeneB, respectively) result in

two different phenotypes of biological process BP and the phenotype of the double gene

mutant (experiment Exp3 where both GeneA and GeneB are mutated) is the same as

one of the single gene mutant with mutation in GeneB, then (GeneB) is epistatic and is

considered to act after GeneA. In other words, GeneA precedes GeneB for the biological

process BP.
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Three sets of experiments matching epMut were found in our sample data in Table 1,

identifying three important gene-to-gene relations:

epistatic(regA, pkaC, inhibits, epMut, 7, 5, 10, aggregation)

epistatic(yakA, pkaC, excites, epMut, 2, 9, 15, aggregation)

epistatic(yakA, pufA, inhibits, epMut, 2, 3, 11, aggregation)

Note that for every relation like those above, GenePath always gives the name of

the inference pattern and the experiments that were involved and can be used as an

evidence for the relation hypothesized.

5 Synthesis of Genetic Networks

GenePath constructs a genetic network by considering all the relations it found as

constraints over the possible networks and attempting to find a network that would

satisfy all the constraints.

The mutual consistency of abduced network constraints is tested first. If conflicts are

found – such as, for instance, a gene reported not to influence the biological process

and at the same type involved in some epistasis relation for the same process – they are

shown to the domain expert and resolved either by removal of one of the constraints

in conflict, or through proper revision of the data (if the error has been found there).

For our example on aggregation of Dictyostelium, no conflicts in abduced constraints

were detected.

The construction of the genetic network is based on identification of directly related

genes. Two genes are assumed to be in direct relation if they have been found to be

in epistatic relation and if no other gene is found that precedes one of them and is at

the same time preceded by the other.

For instance, the following epistatic relations were found in the data (i.e., from back-

ground knowledge and Table 1): acaA → pkaC, acaA � pkaR, pkaR � pkaC. Could

acaA and pkaC be directly related? They are candidates for this because acaA →
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pkaC, but pkaR is epistatic to acaA (acaA � pkaR) and inhibits pkaC (pkaR � pkaC),

so acaA and pkaC cannot be directly related. On the other hand, acaA and pkaR are

directly related because pkaR is epistatic to acaA and there is no evidence for interven-

ing genes. Similarly, we find that pkaR and pkaC are directly related, so a fragment of

the network we have just logically inferred is acaA � pkaR � pkaC.

After finding directly related genes, GenePath constructs the hypothesized genetic net-

work. It places each gene as a node in a graph, drawing a corresponding edge between

nodes that represent directly related genes. Genes that influence the outcome but are

not followed by any other gene in the network are directly related to the biological

process (a special node in the network) with an edge that shows their influence. In our

example, pkaC and pufA are the only such genes and are connected to aggregation with

an edge for excitation and inhibition, respectively. The final genetic network inferred

by GenePath is as presented in Figure 4.

[Figure 4 about here.]

The constructed genetic network was examined by participating expert (GS). He im-

mediately realized that, while the network was in general consistent with his domain

knowledge, the direct influence of pufA on aggregation was not expected. Reviewing the

relations that GenePath found showed that the reason for that was an undetermined

relation between pufA and pkaC, and this was due to lack of appropriate experimental

data.

Notice that for a specific set of network constraints, GenePath constructs a single

network that is consistent with all the constraints. The network does not contain

cycles and includes a minimal number of edges with respect to the constraints it has to

satisfy. It follows the requirement that for any pair of directly related genes there has

to be an epistatic relation that relates these genes, and hence any edge (relation) in

GenePath’s networks can be traced-back to its “cause” in the data. As edges between

genes in GenePath’s networks represent only direct relations, the process of network

construction in GenePath (beyond determination of direct relations) is straightforward

and deterministic.
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An implicit bias that GenePath uses is that of Occam’s razor: GenePath would con-

struct a network consistent with all abduced constraints but with a minimal number

of edges, e.g., GenePath constructs the simplest hypothesis. Let us write this as a

theorem and prove it:

Theorem. Over possible networks that would explain all the relations found in the

genetic data, GenePath networks are minimal with respect to the number of edges.

Proof. Each direct relation between two genes is represented with a sole edge in

GenePath’s network. Removing such an edge would cause inconsistency with the data,

since the network would not be able to explain the effect that an upstream gene has

on the epistatic one. All genes that are not directly related to any other gene but do

influence the biological process are represented in GenePath’s network with a single

edge between each such gene and biological process. Any other inclusion of these genes

in the network would require at least one edge, hence the number of edges can not be

decreased in this way. ✷

Let us illustrate the above concepts through a simple example. Suppose that, exam-

ining the data that included genes A, B and C and a biological process BP, GenePath

abduced that B is epistatic to A, and that all genes influence the biological process

BP in a positive way (excitation). There are five networks (Figure 5) that are consis-

tent with these constraints and include a minimal number of edges: gene B should be

epistatic to A, but the position of gene C can vary. Yet, only the network from Fig-

ure 5.e includes relations that can be proven by the data. For instance, for the network

from Figure 5.a there is no evidence in the data that gene C is epistatic to either A or

B. Similarly, for the network from Figure 5.d there is no evidence for epistasis of B over

C. For this example, GenePath determines that genes A and B are in direct relation,

and because there are no epistatic relation between gene C and any other gene, places

gene C in a parallel path.

[Figure 5 about here.]
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6 Proposal of Genetic Experiments

The nature of experimental work in genetics and biology is most often incremental.

Experiments are usually costly, and after performing the initial ones, these are analyzed

and decisions are taken about which experiments to perform next. To support such

scientific discovery process, a particular module in GenePath was implemented that

can propose additional experiments that would (potentially) refine the network and

resolve ambiguities.

After analyzing the initial data set and developing a genetic network that can explain

the experimental results, the following set of questions may be raised:

1. Which are the genes for which no relations have been determined from the data?

2. Which additional experiments that can be performed to establish the unknown

relations?

3. Based on the possible results of new experiments, what would be the correspond-

ing revised genetic network?

Notice that, in principle, GenePath constructs genetic networks from epistatic and

parallel relations. Both types of relations relate a pair of genes. For some pairs of genes

such relations cannot be determined from the experimental data using GenePath’s

inference patterns, nor are they given as backgound knowledge. For instance, for

Dictyostelium’s aggregation (Table 1) there is a number of such gene pairs, including

yakA-acaA, yakA-regA, pufA-pkaR, pufA-pkaC, pufA-acaA, pufA-regA, and acaA-regA.

Given two genes for which a relation could not be determined from the data, GenePath

can examine the patterns for epistasis and parallelism and check if some pattern would

match the data, provided that an additional experiment(s) would be performed. Notice

that the existing expert-defined patterns determine the relations between two genes

given a set of two or three experiments. When looking for new relations and proposing

experiments, we request that some experiments required by a pattern are already in
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the data base; other experiments required for the pattern are thus hypothesized and

form a set of candidate (proposed) experiments for that specific relation.

For example, for Dictyostelium aggregation, there is insufficient data (Table 1) to es-

tablish the relation between regA and yakA. However, notice that for the epistasis

pattern epMut, the first two experiments that match this pattern already exist: yakA-

with no aggregation (experiment 2) and regA- with excessive aggregation (experiment

7). Following the definition of the pattern, if we perform a third experiment that in-

cludes both mutations (regA- and yakA-) and if its outcome is excessive aggregation

then we can conclude that regA is epistatic to yakA. However, if the phenotype of this

experiment would be no aggregation, then we could conclude that yakA is epistatic to

regA.

In general, for each couple of genes, a specific relation may be supported by different

sets of experiments, of which some may not be present in the data. These missing ex-

periments are candidates for new experiments. As genetic experiments are in principle

costly (if nothing else, it may take a couple of weeks to perform them), proposals for re-

lations that require fewest new experiments are preferred. Furthermore, we favor those

new experiments that require fewer genetic mutations (it is usually easier to obtain

single then double or triple mutant), and those that contain inactivation mutations as

opposed to activation mutations (knocking-out a gene is easier than overexpressing it).

Following the above heuristics, we have constructed an ad-hoc cost function elicited

from geneticists, that estimates the complexity of proposed experiments. The cost

function is based on additive penalties. For instance, a penalty of 20 is assigned for

each experiment, 30 for each double and 90 for each triple mutant, 15 for each gain-of-

function mutation, and -20 if epistasis and -25 if parallel relation can be concluded from

the experiments. To keep all overall penalties above 0, the base (default) penalty is 45.

Notice that while this function is purely heuristic and is not theoretically founded, in

all observed cases they ranked the experiments in agreement with the geneticists.

Using this methodology, GenePath can find couples of (yet) unrelated genes, construct

all sets of experiments that would relate genes in each couple, and present only exper-

iment sets with the lowest complexity scores (penalties). However, a different, more
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focused approach proved to be more practical. When a geneticist is presented a genetic

network and a list of unrelated genes, it seems quite straightforward for him to pick

an interesting couple of unrelated genes and use GenePath to try to establish some

relation and present the result of such analysis – proposal of genetic experiments –

starting with the simplest proposals. This process can be repeated for different couples

of unrelated genes, possibly each time picking a proposed experiment, adding it to the

database and observing a new resulting network.

For illustration, consider again the data on Dictyostelium aggregation (Table 1). An

interesting and unrelated gene couple picked by participating geneticists was pufA and

pkaC. The simplest experiment proposed by GenePath was:

New experiment a: pkaC-, pufA-

Cost 30

Case aggregation of

[++] then pkaC -| pufA (epMut, 5, 3, a)

[-] then pufA -| pkaC (epMut, 3, 5, a)

[+], [+-] then pufA || pkaC (parDiff, 3, 5, a)

Here, the first line describes an experiment; it is labeled a and involves knock-out

mutations of pkaC and pufA. The associated penalty (second line) of the proposed

experiment is 30. The type of relation between these two genes depends on the outcome

of the proposed experiment (aggregation). If the resulting aggregation is excessive then

pkaC inhibits pufA, if the resulting mutant shows no ability to aggregate then pufA

inhibits pkaC, and for the other two outcomes the two genes act in parallel. Notice that

GenePath shows the support for each relation by stating which pattern and experiments

(together with the new experiment a) would be used for reaching the conclusion.

The proposal was presented to the participating geneticist. His comment was: An

outcome with no aggregation is exactly what I would expect. The experiment was never

done because we obtained biochemical data that showed directly that the protein encoded

by pufA binds mRNA of pkaC and prevents translation into protein.

Another proposal for the same gene couple, ranked next in the list of proposals, was:
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New experiment a: pkaC+, pufA+

New experiment b: pufA+

Cost 95

Case aggregation of

[-,-], [+,+], [+-,+-] then pkaC -| pufA (epMut, 9, b, a)

[++,-], [++,+], [++,+-] then pufA -| pkaC (epMut, b, 9, a)

[-,+], [-,+-], [+,-],

[+,+-], [+-,-], [+-,+] then pufA || pkaC (parDiff, b, 9, a)

This proposal assumes two new experiments (experiment a with a double and b with

a single mutant). Based on their outcome, different relations are concluded again. For

instance, if neither of the mutants can aggregate (denoted with [-,-]), the relation

pkaC inhibits pufA is concluded. However, if the double mutant does not aggregate

but the single mutant does ([-,+]), then the two genes act in parallel. Notice further

that, compared to the previous proposal, this one scores worse in terms of complexity,

as it includes two experiments that also rely on gain-of-function mutants. Geneticist’s

comment on this proposal confirmed the utility of our complexity heuristics: This

experimental proposal is too complicated. Usually, activation of a gene (especially by

overexpression) is not as reliable as inactivating it. Activating two genes in one strain

is therefore undesirable.

Another couple of genes that participating geneticists considered interesting to find a

relation for were regA and pkaR. Two simplest proposals for their relation by GenePath

were:

New experiment a: pkaR+

New experiment b: pkaR+, regA-

Cost 80

Case aggregation of

[-,++], [+,++], [+-,++] then pkaR -> regA (epMut, a, 7, b)

[-,-], [+,+], [+-,+-] then regA -> pkaR (epMut, 7, a, b)

[-,+], [-,+-], [+,-],

[+,+-], [+-,-], [+-,+] then pkaR || regA (parDiff, a, 7, b)
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New experiment a: pkaR-, regA+

New experiment b: regA+

Cost 80

Case aggregation of

[-,++], [+,++], [+-,++] then regA -> pkaR (epMut, b, 4, a)

[-,-], [+,+], [+-,+-] then pkaR -> regA (epMut, 4, b, a)

[-,+], [-,+-], [+,-],

[+,+-], [+-,-], [+-,+] then pkaR || regA (parDiff, 4, b, a)

Following the first suggestion, the two experiments were indeed performed in labora-

tories at Baylor College of Medicine, and the result for both mutants (i.e., for mutant

with pkaR + and mutant with pkaR + regA-) was reduced aggregation. Hence, we can

conclude that regA is epistatic to pkaR (regA → pkaR).

Overall, there are therefore three experiments that we can add to our experiment

base for aggregation and that help to relate pkaC and pufA on one hand and pkaR

and regA on the other. With these, and with new relations (pufA � pkaC, regA →
pkaR) the new resulting genetic network is as shown in Figure 6. This network is in

complete accordance with current genetic hypotheses over the regulation of aggregation

in Dictyostelium [17, 16, 10, 13].

[Figure 6 about here.]

7 Another Case Study: Sporulation of Dictyostelium

For another case study that we report in this paper, GenePath was used to infer

a genetic network that controls sporulation in Dictyostelium. Sporulation is a phase

that follows aggregation, where Dictyostelium amoeba specialize to either those forming

stalks or spores (Figure 2). The data (Table 2) include 19 experiments involving 6 genes

and the biological process (sporulation) was graded from absence of sporulation through

slow and normal (wild-type) sporulation to rapid sporulation. A single epistatic relation

was given as a prior knowledge: pkaR � pkaC.
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[Table 2 about here.]

[Table 3 about here.]

GenePath found that all genes used in Table 2 influence the biological process of

sporulation: while pkaR and regA inhibit it, all other genes excite sporulation. No

experimental support was found for parallelism. A number of epistatic relations were

found (Table 3). A genetic network constructed from these constraints is given in

Figure 7.a. It was also observed (by GenePath, and by expert’s overview of network

and constraints) that relations between dhkA and tagC, and tagB and tagC could not

be determined from the data. Of these two, the relation between dhkA and tagC was

explored, and GenePath proposed two relatively simple sets of experiments to relate

them:

New experiment a: dhkA-, tagC-

Cost 30

Case sporulation of

[no] then dhkA -| tagC (epMut, a, 2, 14)

[slow] then tagC -| dhkA (epMut, a, 14, 2)

[normal], [rapid] then dhkA || tagC (parDiff, 2, 14, a)

New experiment a: dhkA+, tagC-

Cost 45

Case sporulation of

[no] then dhkA -> tagC (epMut, a, 19, 14)

[normal] then tagC -> dhkA (epMut, a, 14, 19)

[slow], [rapid] then dhkA || tagC (parDiff, 19, 14, a)

The first of the two experiments proposed has a better score than the second, since both

mutations in the experiment in the first set are knock-outs, while an overexpression

mutation is present in the second experiment. Notice that possible conclusions from

the first suggestion are different from the second (the first includes only inhibitory,

the second only excitatory epistatic relations). When reviewed by the geneticist, he
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preferred the second experiment and predicted a normal phenotype, thus establishing

the relation tagC → dhkA. This experiment was not yet performed, but its expected

results are in accordance with previous biological findings [14]. Adding this experiment

to the data resulted in genetic network as shown in Figure 7.b. This network is consis-

tent with the present biological knowledge on regulatory mechanisms for sporulation

of Dictyostelium.

[Figure 7 about here.]

8 Implementation and Web-Based Interface

GenePath is implemented in Prolog, and its substantial part is available through web-

based interface (http://genepath.org).

8.1 Implementation in Prolog

GenePath’s core is implemented in Prolog, a declarative computer language often asso-

ciated with development of Artificial Intelligence-based applications [3]. Programming

in Prolog is based on stating logical statements about the domain, where the data and

the program share the same syntax. For instance, our aggregation data set (Table 1)

is encoded as a set of Prolog clauses, like:

genes([yakA, pufA, pkaR, pkaC, acaA, regA]).

phenotypes([aggregation]).

outcome_values(aggregation, [’-’, ’+’, ’++’]).

exp(1, [], aggregation, ’+’).

exp(2, [yakA:-], aggregation, ’-’).

exp(3, [pufA:-], aggregation, ’++’).

exp(4, [pkaR:-], aggregation, ’++’).

exp(5, [pkaC:-], aggregation, ’-’).

exp(6, [acaA:-], aggregation, ’-’).

...

exp(15, [yakA:-, pkaC:+], aggregation, ’++’).
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Notice that our sample data set includes a single biological process – in general, the

number of biological processes used in GenePath is not limited. The above Prolog

code lists gene names used in the problem, states the name of the biological process

and the possible phenotypes (outcomes) associated with it, and gives the experiments.

When describing experiments, the colon between the name of the gene and the type

of mutation was added to simplify the rest of the Prolog code; the knock-out of gene

pufA, for instance, is not described with the usual notation pufA-, but with pufA:-.

In several places in the code above, Prolog’s notation for lists is used. In this notation,

the members of a list are enumerated and enclosed in square brackets. For example,

the list of items a, b, c is written as [a,b,c].

Prolog was chosen as a GenePath’s programming language for its straightforwardness

in defining and reasoning with inference patterns that are used to identify gene-to-gene

and gene-to-outcome relations. For instance, consider the pattern parDiff (“two genes

are in parallel paths IF mutations in either gene have an effect on the biological process

AND the phenotype of the double mutant is different from either mutation alone”) can

be expressed in Prolog as (text following “%” is a comment, and not part of the code):

parallel( GeneA, GeneB, Evidence, BP) :- % GeneA and GeneB are on parallel paths if:

exp(Exp1,[GeneA:MutA], BP, Out1), % There is single mut. experiment with GeneA

exp(Exp2,[GeneB:MutB], BP, Out2), % There is single mut. experiment with GeneB

exp(Exp3,[GeneA:MutA,GeneB:MutB],BP,Out3), % There is corresponding double mutant

Out1 \== Out2, % The outcomes of Exp1 and Exp2 are different

Out3 \== Out1, Out3 \== Out2, % The outcome of the double mutant is also different

Evidence = (parDiff, Exp1, Exp2, Exp3). % The evidence comprises the three experiments

Assume that the data of Table 1 has been loaded into Prolog. An example of a query

that uses the above definition and asks for genes that may be on parallel paths to

aggregation is:

?- parallel(A, B, Evidence, aggregation).

One of Prolog’s responses would be:
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A = pkaC,

B = regA,

Evidence = (parDiff, 10, 5, 7)

GenePath’s code to find all possible relations between genes and outcomes, and to

derive the corresponding plausible genetic network is more technical and complex, and

follows general ideas about graph theory programming in Prolog [3]. Nevertheless,

GenePath’s Prolog implementation currently consists of no more than five hundred

lines of code, and its relative simplicity is helpful in testing and prototyping new ideas

and patterns.

8.2 Web-Based Interface

While the Prolog programming language proved an excellent environment for prototyp-

ing and testing both GenePath and its qualitative reasoning part GeneHyp, attempts

to convince (even a participating) geneticists to use the program in its native envi-

ronment were futile (as expected). Since our goal is to develop a broadly accessible

and easy-to-use intelligent assistant for explorative analysis of genetic data, we conse-

quently designed a web-based interface, where Prolog’s core resides on the server, and

is accessed through a server’s Visual Basic interface to provide a pure HTML-based

solution for clients. Currently, a web-based interface is available only for abductive

inference part, and can be freely accessed at http://genepath.org.

A web-based interface is comprised of several screens that allow a geneticist to state

genes and outcomes, define the background knowledge and list genetic experiments.

The data can be saved to a local file on a client, making it available for future uploads

and changes. GenePath uses a single window for result analysis (Figure 8), where

a hypothesized network is displayed together with a choice of abduced constraints.

Importantly, the user can request, by a mouse click, evidence for a specific constraint,

obtaining a window that describes the reasoning behind this constraint in plain English

(Figure 9).

[Figure 8 about here.]
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[Figure 9 about here.]

9 Discussion

Besides the Dictyostelium aggregation and sporulation, in its two years-long devel-

opment and testing GenePath has been tried on a number of other problems. For

instance, using 28 experiments, GenePath found a correct genetic network for growth

and development of Dictyostelium that includes 5 genes [17, 16]. From the data on 20

experiments, it successfully reconstructed the programmed cell death genetic network

of C. elegans that involves four genes [11]. In its most elaborate test, 79 experiments

involving 16 genes were presented to GenePath. Data were encoded to eliminate the

possibility of help from an informed geneticist: genes where not named but rather given

an ID number and the origin of the data was unknown. At the start, GenePath pointed

out the inconsistencies in the data and identified a single gene that was a source of

them. After that gene was excluded, GenePath developed a single solution in the form

of a (linear) path. When this was presented to the owner of the data, it was confirmed

to be correct and consistent with the one published [4].

Proposing genetic experiments is the newest addition to GenePath. We believe this

mechanism will become crucial for GenePath to seamlessly support explorative genetic

data analysis. Experiments in sporulation and aggregation, as described in this paper,

show that experiment proposal may indeed point out to the experiments that are

relevant and are needed to perform further exploration. Most notably, this has been

shown in the experiment proposed by GenePath to relate pkaR and regA. Besides sole

experiment proposal, this schema can be used also for what-if and explorative analysis,

where genetic experiments are not necessarily performed in the laboratory but are

rather hypothesized and studied for their effect on the regulatory mechanisms.

With respect to scalability of GenePath, the abductive part of GenePath should scale

well: most GenePath’s patterns are defined over a couple of genes and although the

corresponding search space grows exponentially with the number of genes considered,

geneticists would usually investigate regulatory networks that include at most a few
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dozen genes. For both problems examined in this paper, GenePath constructed the

resulting genetic networks within few seconds of CPU time (Pentium IV, 1200 MHz).

The response time was equally fast even for our biggest real-life data set with 16 genes

and 79 experiments mentioned above.

To test GenePath on data sets of the size beyond currently available ones in classical

genetics, we have computer-generated several large genetic networks, constructed ex-

periments from them and gave them to GenePath for reconstruction. The networks we

have generated were constrained in the number of parallel paths. Experiments were

generated so that we made sure that all necessary epistasis relations could be deter-

mined from the data. The results of these experiments are given in Table 4 and show

that GenePath effectively handles data that contains hundreds of genes and experi-

ments. Even for the largest case investigated (1000 genes and about 3000 experiments)

the response time was reasonable. Further experiments show that the time to find

relations from the data is neglectable in comparison with the time needed to con-

struct genetic networks from abduced constraints. Notice that these experiments are

rather unrealistic and largely exceed in size the currently biggest problems examined

by contemporary classical genetics.

[Table 4 about here.]

Different from the abduction of relations and network generation, the experiment pro-

posal part of GenePath is prone to scalability problems, as with the insufficient data

there may be many pairs of genes with undefined relation and many corresponding sets

of experiments that can be proposed. A way to limit this combinatorial explosion is

expert’s guidance: a geneticist can point out an interesting gene pair to explore, and

only the least complex experiment sets will be considered. We do not regard this as a

deficiency, as we view GenePath as an intelligent assistant and value its interactivity,

rather than aim at providing a self-sufficient system for autonomous exploration of

genetic data.
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10 Related Work

GenePath uses a genetic logic similar to that described by Avery and Wasserman [2] for

determining gene order by epistasis in regulatory networks. It uses abduction (see, for

instance, [8]) as an inference mechanism, and principles of expert systems and artificial

intelligence for combining expert and domain knowledge and data.

The best-known AI system intended for application in classical genetics is Mark Stefik’s

MOLGEN [18]. MOLGEN is an expert system for planning gene-cloning experiments

in molecular genetics. Stefik [18] gives a detailed example of how MOLGEN recon-

structed a solution to a rat-insulin gene cloning problem solved previously by Ullrich

et al. [20]. However, due to the limitations of its knowledge base and possibly other

difficulties, MOLGEN was never applied to find a solution to a previously unsolved

genetic experimental problem.

In contrast to MOLGEN, GenePath is not intended to plan experiments, but to inter-

pret experimental data and suggest new experiments that would, if carried out, pro-

vide most useful new information about the regulatory mechanism under study. Also,

GenePath uses different AI techniques than MOLGEN. GenePath performs abductive

inference, whereas the main AI mechanism in MOLGEN is hierarchical means-ends

design of plans.

In terms of application, the problem of genetic network construction from data has

recently gained substantial interest, but in modelling most of the related work focuses

on the analysis of gene expression data [5]. For instance, Friedman at al. [6] use

Bayesian networks to discover and Shrager et al. [15] use heuristic search to revise

genetic networks, and Akutsu et al. [1] infer genetic networks in the form of Boolean

or qualitative networks. Like GenePath, most contemporary systems infer networks

which are directional and include both excitation and inhibition links.

Data considered by GenePath comes from classical genetics, i.e. each experiment ob-

serves the effect of the mutation on some biological process. The motivation for having

a program that supports explorative research in this area is twofold. First, most of re-

search in functional genomics is still based on classical phenotypes. And second, there
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is a potential bridge between classical genomics and expression data analysis where a

whole gene expression array would be considered as a mutant’s phenotype [7]. It is be-

yond the scope of this paper to speculate on how gene relations could be inferred from

expression array phenotypes, yet we have to note that even through such mechanisms

the genetic networks would remain small due to the requirement for the construction

and experimentation with single and double mutants (see also Introduction). Namely,

epistasis, a cornerstone relation for construction of genetic networks, can by contem-

porary genetics be proved only through the use of mutants, and to gather a higher

volume of relevant data would require solving the problem of constructing and analyz-

ing a large number of mutants in parallel (see, for instance, [12, 21]). Such experiments

are likely to be performed in other organisms in the near future [9, 19], so the need

for automated methods for organizing genes in genetic pathways is evident.

11 Conclusion

GenePath has been a subject of experimental verification on real-life data and cur-

rent problems in genetics for over two years, and is now approaching the point where

it can assist geneticists, scholars and students in discovering and reasoning on ge-

netic networks. In the paper, we have presented and discussed several original and

essential GenePath’s mechanisms: abduction of relations between genes and biological

processes, construction of genetic networks and proposal of genetic experiments. While

GenePath’s implementation in Prolog already embeds all these components, we plan to

accordingly enhance its Web-based interface (http://genepath.org), which at present

supports experiment and data cataloging, abductive inference and network construc-

tion. With these, we believe that GenePath will mature into a seamless intelligent

assistant for explorative genetic data analysis and reasoning on genetic networks.
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Figure 1: An example of genetic network.
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Figure 2: Development of Dictyostelium (R. Blanton, M. Grimson, Texas Tech. Univ.)
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Figure 4: Genetic network for aggregation of Dictyostelium derived through constraint
satisfaction
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Figure 5: Five different genetic networks, all consistent with constraints that require
epistasis of gene B over A and a positive influence of genes A, B and C to biological
process BP.
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Figure 6: Genetic network for aggregation of Dictyostelium based on analysis of data
and proposal of new genetic experiments
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Figure 7: Two genetic networks for sporulation of Dictyostelium, one as derived from
the data from Table 2 (a), and another one using additional experiments that determine
the relation between tagC and dhkA (b).
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Figure 8: A web-based interface showing the results of analysis.
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Figure 9: Explanation of the abduced relation regA � pkaC.
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Table 1: Genetic data set: aggregation of Dictyostelium

# Genotype aggregation
1 wild-type +
2 yakA- -
3 pufA- ++
4 pkaR- ++
5 pkaC- -
6 acaA- -
7 regA- ++
8 acaA + ++
9 pkaC + ++
10 pkaC-, regA- -
11 yakA-, pufA- ++
12 yakA-, pkaR- ±
13 yakA-, pkaC- -
14 pkaC-, yakA + -
15 yakA-, pkaC + ++
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Table 2: Experimental data on Dictyostelium sporulation

# Genotype Sporulation
1 wild-type normal
2 dhkA- slow
3 dhkA-, pkaC + rapid
4 dhkA-, pkaR- rapid
5 dhkA-, regA- rapid
6 pkaR- rapid
7 pkaR + slow
8 regA- rapid
9 regA-, pkaR + slow
10 tagB- no
11 tagB-, dhkA + normal
12 tagB-, pkaR- rapid
13 tagB-, regA- rapid
14 tagC- no
15 pkaC + rapid
16 pkaC- no
17 tagC-, pkaR- rapid
18 tagC-, regA- rapid
19 dhkA + normal
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Table 3: Epistatic relations for sporulation of Dictyostelium

Epistatic Relation Evidence
dhkA → pkaC epMut, 2, 15, 3
dhkA � pkaR epMut, 2, 6, 4
dhkA � regA epMut, 2, 8, 5
regA → pkaR epMut, 7, 8, 9
regA � pkaC epTC, [regA → pkaR and pkaR � pkaC ]
tagB → pkaR epMut, 10, 6, 12
tagB � regA epMut, 10, 8, 13
tagB → pkaC epTC, [tagB → dhkA and dhkA � pkaC ]
tagB → dhkA epMut, 10, 19, 11
tagC � regA epMut, 14, 8, 18
tagC � pkaR epMut, 14, 6, 17
tagC → pkaC epTC, [tagC → pkaR and pkaR � pkaC ]
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Table 4: GenePath’s response time on a set of computer-generated data sets. (#Genes
= number of genes in experiments, #Exp = number of experiments (about 1/3 of these
are double mutants), #Par = number of parallel paths in the network, Trelations[s] =
CPU time in seconds for abduction of relations, Tnetwork[s] = CPU time in seconds for
construction of genetic network).

#Genes #Exp #Par Trelations[s] Tnetwork[s]
1000 2998 50 43 2262
500 1259 25 8 308
500 1205 0 8 353
250 650 25 3 50
250 633 10 3 37
250 615 0 2 46
100 264 10 1 4
100 261 5 <1 4
100 256 0 <1 2
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